Task 1

E.g. for T:

T' indicates reflecting T in line M₁

T" indicates reflecting T' in line M_2

The combined reflections result in a single translation of T onto T" of $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, i.e. 0 across and 8 vertically upwards.

is a translation of vector $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$

is a translation of vector $\binom{8}{2}$

Exercise

Task 1 A to B	Reflection in line $x = 4$ followed by translation by $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ or translation by	Task 2	 Reflecting then translating Translating then reflecting
A to S A to T	$\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ followed by reflection in line $x = 4$ Reflection in line $x = 4$ Translation by $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$	$\begin{array}{c} 6 \\ 5 \\ 4 \end{array}$	
B to A B to S B to T	Reflection in line $x = 4$ followed by translation by $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ or translation by $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ followed by reflection in the line $x = 4$ Translation by $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ Reflection in line $x = 4$	$\begin{array}{c} 3 \\ 2 \\ 1 \\ -1 \\ -1 \end{array}$	$\begin{array}{c} 3 \\ 2 \\ 1 \\ -1 \\ 0 \\ -1 \end{array}$
S to A S to B S to T	Reflection in line $x = 4$ Translation by $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ Reflection in line $x = 4$ followed by translation by $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ or translation by $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ followed by reflection in the line $x = 4$	Coordinates	$\begin{array}{c} 6 \\ 5 \\ 4 \\ 3 \end{array}$
T to A T to B T to S	Translation by $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ Reflection in line $x = 4$ Reflection in line $x = 4$ followed by translation by $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ or translation by $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ followed by reflection in line $x = 4$	(3,-1), (3,-2), (5,-2) $(3,-1), (3,-2), (5,-2)$ $(3,-1), (3,-2), (5,-2)$ $(3,-1), (3,-2), (5,-2)$	$\begin{array}{c} 2 \\ 1 \\ -1 \\ 0 \\ -1 \end{array} \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ -1 \end{array}$

Exercise

1.	2.	3.	
 a) (2,4), (3,4) and (2,6) b) i) (4,4), (5,4) and (4,6) ii) (2,1), 3,1) and (2,3) iii) (3,5), (4,5) and (3,7) iv) (0,6), (1,6) and (0,8) 	 a) (7,4), (8,4) and (8,6) b) (-4,-2), (-6,-2) and (-4,-3) c) (4,2), (6,2) and (4,3) d) (2,0), (2,2) and (3,2) 	Final images in same location Final images in different locations a) • b) • c) • d) • Images will be in the same location if the translation is parallel to the mirror line.	

D1.

The distance between corresponding points on the images will double the value of **a** (assume positive distance)

Exercise

Exercise