Answers: Week 2 Session 1

Task 1

E.g. for T:

T' indicates reflecting T in line M_{1}

T" indicates reflecting T^{\prime} in line M_{2}

The combined reflections result in a single translation of T onto T" of $\binom{0}{8}$, i.e. 0 across and 8 vertically upwards.

Task 2

 is a translation of vector $\binom{4}{0}$

The single transformation of S to $\mathrm{S}^{\prime \prime}$ is a translation of vector $\binom{4}{0}$

The single transformation of S to $\mathrm{S}^{\prime \prime}$
is a translation of vector $\binom{8}{0}$

Exercise

Answers: Week 2 Session 2

Task 1

- Reflecting then translating
- Translating then reflecting

A to B

[^0]A to T

B to A

B to S
B to T
S to A
S to B

S to T

T to A
T to B
T to S Reflection in line $x=4$ followed by translation by $\binom{0}{3}$ or translation by $\binom{0}{3}$ followed by reflection in line $x=4$
Reflection in line $x=4$ followed by translation by $\binom{0}{-3}$ or translation by $\binom{0}{-3}$ followed by reflection in line $x=4$ Reflection in line $x=4$
Translation by $\binom{0}{-3}$
Reflection in line $x=4$ followed by translation by $\binom{0}{3}$ or translation by $\binom{0}{3}$ followed by reflection in the line $x=4$
Translation by $\binom{0}{3}$

Reflection in line $x=4$
Translation by $\binom{0}{-3}$ Reflection in line $x=4$ followed by translation by $\binom{0}{-3}$ or translation by $\binom{0}{-3}$ followed by reflection in the line $x=4$

Translation by $\binom{0}{3}$

Task 2

Coordinates
$(3,-1),(3,-2),(5,-2)$

Exercise

a) $(2,4),(3,4)$ and $(2,6)$
b)
i) $(4,4),(5,4)$ and $(4,6)$
ii) $(2,1), 3,1)$ and $(2,3)$
iii) $(3,5),(4,5)$ and $(3,7)$
iv) $(0,6),(1,6)$ and $(0,8)$
a) $(7,4),(8,4)$ and $(8,6)$
b) $(-4,-2),(-6,-2)$ and $(-4,-3)$
c) $(4,2),(6,2)$ and $(4,3)$
d) $(2,0),(2,2)$ and $(3,2)$
3.

Images will be in the same location if the translation is parallel to the mirror line.

D1.

The distance between corresponding points on the images will double the value of a (assume positive distance)

Answers: Week 2 Session 3

Exercise

1.	2.	3.	4.	6.	D1
a) i) 4 ii) $\frac{1}{4}$ b) i) 2 ii) $\frac{1}{2}$ c) i) 3 ii) $\frac{1}{3}$	SF 1: Shapes stay the same	SF 1 perimeters: A 10; B 10; C 10; D 10; E; 8 SF 2 perimeters: A' 20; B' 20; C' 20 ; D' 20; E' 16 SF 3 perimeters: A" 30; B" 30; C" 30; D" 30; E" 24 SF has multiplying effect on perimeter (scaling)	5. a) Perimeter 76 m b) Perimeter 19 m c) Perimeter 114 m	Multiple possible ways of partitioning. Final rectangles must always be 4×6 7.	a) $\begin{aligned} & a=4, b=5 ; \\ & a=8, b=10 ; \\ & a=12, b=15 \end{aligned}$ b) E.g.: $5 a=4 b$

Answers: Week 2 Session 4

Task 1

A to B: Scale factor of 2 A to C: Scale factor of 4 A to D: Scale factor of 6

B to A: Scale factor of $\frac{1}{2}$ B to C: Scale factor of 2 B to D : Scale factor of 3

C to A: Scale factor of $\frac{1}{4}$
C to B: Scale factor of $\frac{1}{2}$
C to D: Scale factor of $1 \frac{1}{2}$ or $\frac{3}{2}$
D to A: Scale factor of $\frac{1}{6}$
D to B: Scale factor of $\frac{1}{3}$
D to C: Scale factor of $\frac{2}{3}$

The new areas are $49 \times$ the original area (note that this is also 7^{2})

Exercise

[^0]: A to S

