Answers: Week 3 Session 1

1.	3.	5.	7.	D1.
a) 6 ²	$9^1 = 9$ $5^3 = 25 \times 5$	2 to the power of 4: 3 to the power of 3: 4 to the power of 2: 5 to the power of 2:	<i>a</i> = 5	a) 2 ³
b) 6 ⁴	$5^3 = 3 \times 3 \times 3 \times 3 \times 3$ $10^2 = 2^{10}$	A C L D J K B E G F H I		b) 3×5^2
c) 2 ⁵	$8^3 = 24$ $8^4 = 8 \times 8 \times 8 \times 8$	6.		c) $2^2 \times 3^2$
2.	4.	$2 \times 2 \times 7 \times 7 \times 7$	8.	
6 ⁶	a) $2^3 < 3^2$	$5 \times 3 \times 5 \times 3$ $2^2 \times 3^2 \times 5^2 \times 7$	E.g. 2, 4, 6	
	b) $2^4 = 4^2$	$7 \times 7 \times 5 \times 5 \times 3 \times 3 \times 5 \times 7 \qquad 3^2 \times 5^2$	Any even	
	c) $3^3 < 5^2$	$5 \times 5 \times 3 \times 3 \times 2 \times 2 \times 7$ $2^2 \times 7^3$	numbers	
	d) $1^8 = 1^5$	$5 \times 5 \times 5 \times 3$ $3^2 \times 5^3 \times 7^3$		

Task 1

Task 2

 $3 = 3 \times 1$ Introducing 4s will not change the numbers that can be shaded $6 = 2 \times 3$ 16 17 because we have already $9 = 3 \times 3$ shaded all the products of 2×2 $12 = 2 \times 2 \times 3$ $18 = 2 \times 3 \times 3$ that are on the grid. $24 = 2 \times 2 \times 2 \times 3$ Including 5s results in all $27 = 3 \times 3 \times 3$ multiples of 5 being shaded $36 = 2 \times 2 \times 3 \times 3$ **except** those with a prime factor $48 = 2 \times 2 \times 2 \times 2 \times 3$ $54 = 2 \times 3 \times 3 \times 3$ other than 2, 3 or 5. $72 = 2 \times 2 \times 2 \times 3 \times 3$ E.g. numbers **not** shaded: $81 = 3 \times 3 \times 3 \times 3$ $96 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$ $35 = 7 \times 5$ $55 = 11 \times 5$ $60 = 13 \times 5$ $70 = 2 \times 5 \times 7$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1.		3.	4.	5.	D1.
Blue shading indicates various a) $24 = 3 \times 8$ $24 = 3 \times 2 \times 4$	b) $120 = 10 \times 12$ $120 = 5 \times 2 \times 12$	a) $24 = 2 \times 2 \times 2 \times 3$ b) $48 = 2 \times 2 \times 2 \times 2 \times 3$	$2 \times 2 \times 3 = 12$ $2 \times 2 \times 5 = 20$ $2 \times 3 \times 3 = 18$	a) i) $28 = 2 \times 2 \times 7$ or 4×7 ii) $63 = 3 \times 3 \times 7$ or 9×7 iii) $42 = 2 \times 3 \times 7$ or 6×7	1, 2, 5, 7, 13, 41, 97
$24 = \frac{3}{2} \times \frac{2}{2} \times \frac{2}{2} \times \frac{2}{2}$	$120 = \frac{5 \times 2 \times 2 \times 6}{5}$	c) $60 = 2 \times 2 \times 3 \times 5$	$2 \times 3 \times 5 = 30$ $3 \times 3 \times 5 = 45$	b) No, she cannot form multiples of 11 that are also multiples of prime numbers missing from Gavin's list, e.g. she cannot form 11×13 .	D2.
a) $12 = 2 \times 3 \times 2$ c) $30 = 2 \times 3 \times 5$ e) $45 = 3 \times 3 \times 5$	b) $20 = \frac{2}{2} \times 2 \times 5$ d) $36 = \frac{2}{2} \times 2 \times 3 \times 3$ f) $54 = 2 \times 3 \times \frac{3}{2} \times \frac{3}{2}$	d) 72 = 2 × 2 × 2 × 3 × 3		c) He can remove factors that are not prime as they can be formed by the prime factors in the list: $4 = 2 \times 2$ $6 = 2 \times 3$ $8 = 2 \times 2 \times 2$ $9 = 3 \times 3$ (see part a) for examples)	104, 105, 112

Answers: Week 3 Session 3

Same e.g: Prime factors, number of cubes **Different** e.g.: Initial factor pair chosen, order of prime factors in the tree

Whatever factor pair we start with we will always end up with the same prime factors. **Try this out for yourself with different starting numbers.**

Task 2

We can use the **product of primes** for some numbers to help us work them out for others. We just need to look at the connection between the numbers: E.g.:

1.	2.	4.	5.	D1.
a) 36 3 12 (4) 3 2 2 $36 = 2 \times 2 \times 3 \times 3$ 2×2 $36 = 2 \times 2 \times 3 \times 3$ $42 = 2 \times 3 \times 7$ $42 \times 3 \times 7$ $60 = 2 \times 2 \times 3 \times 5$ $60 = 2 \times 2 \times 3 \times 5$	a) 72 = 2 × 2 × 2 × 3 × 3 b) 175 = 5 × 5 × 7 c) 144 = 2 × 2 × 2 × 2 × 3 × 3 d) 1750 = 2 × 5 × 5 × 5 × 7 e) 350 = 2 × 5 × 5 × 7 f) 216 = 2 × 2 × 2 × 3 × 3 × 3 3. Brenda is correct – it is possible to start with any factor pair, the final product of primes will be the same: 84 - 21 - 2 - 3 - 7 $84 - 2 + 22 - 3 - 7$ $84 - 2 + 22 - 3 - 7$ $84 - 2 + 22 - 3 - 7$ $84 - 2 + 22 - 3 - 7$ $84 - 2 + 22 - 3 - 7$ $84 - 2 + 22 - 3 - 7$ $84 - 2 + 22 - 3 - 7$	a) All share the prime factors of 72; then \times 2 for 144 in c); or \times 3 for 216 in f). b) All share the prime factors for 175; then \times 2 for 350 in e); and \times 2 \times 5 for 1750 in f) c) 72 \times 10 = 720 so we must multiply the prime factors of 72 by \times 2 \times 5; 720 = 2 \times 2 \times 2 \times 3 \times 3 \times 2 \times 5	 These can be answered by comparing the index of 2, 3 and 5 in each multiplication. There is no need to calculate the products. a) True - 2² for <i>d</i> versus 2 for <i>a</i> b) False - <i>c</i> is 2² times the value of <i>b</i> c) True - 2³ and 5³ for <i>c</i> versus 2² and 5² for <i>d</i> d) False - Comparing both to 2 × 3² × 5² shows <i>b</i> has greater index for 5 versus <i>d</i> has greater index for 2. 	a) Falseb) Falsec) True

Answers: Week 3 Session 4

Task 1	Shows prime factors	Task 2	$\fbox{2 \times 5^2 \times 7}$	Factor pairs:
1 = 1 2 = 2	Comparing the prime factorisation of 60 to the prime	We can identify factor pairs by grouping the prime factorisation into two groups in different ways.	2 × 5 × 7 5	→ 70 and 5
$3 = 3$ $4 = 2 \times 2$	factorisations of its factors:	For example, if our number's prime factorisation is:	5 × 7 - 5×2 -	→ 35 and 10
5 = 5 $6 = 2 \times 3$ $10 = 2 \times 5$ $12 = 2 \times 5$	 Prime factorisation of any factor is a subset or part of the prime factorisation of 60. 	$2 \times 5^2 \times 7$ we know that multiplying these numbers together	$5^2 \times 7$ 2	→ 175 and 2
$12 = 2 \times 2 \times 3$ $15 = 3 \times 5$ $20 = 2 \times 2 \times 5$	 Prime factorisation of factor pairs (E.g. 6 and 10) forms the prime factorisation of 60 	gives our number (350).	2×5^2 7	→ 50 and 7
$30 = 2 \times 3 \times 5$ $60 = 2 \times 2 \times 3 \times 5$	 when multiplied together. All prime factorisations are composed of the prime 	We also know that we can group the prime factors differently: $(2 \times 5) \times (5 \times 7) = 10 \times 35$	2 × 7 - 5 ² -	→ 14 and 25
	factors.	So 10 and 35 must be a factor pair of our number.	$2 \times 5^2 \times 7$ 1	→ 350 and 1

1.		2.	3.	5.	D1.
a) $30 \\ 5 \\ 6 \\ 2 \\ 3$	b) 42 6 7 2 3	 b) 30, 42 and 70 all have 8 factors: 2 factors: The original number and 1 3 factors: The distinct prime factors 3 factors: 3 ways of combining the prime factors to form new factors (e.g. for 42 forming 3 × 7 = 21) 20 only has 6 factors: 2 factors: The original number and 1 2 factors: The distinct prime factors (2 and 7) 2 factors: 2 ways of combining the prime factors to form new factors (2 × 2 = 4 and 2 × 7 = 14) 	a) 5 b) Yes: $2 \times 2 = 4$ c) $168 \times 42 = 2^4 \times 3^2 \times 7^2 = (2^2 \times 3 \times 7) \times (2^2 \times 3 \times 7)$ so it must be a square number d) $2^8 \times 3^6 \times 5^4 \times 7^4$	210 has most (16 factors)230 has fewest (8 factors)	a) Greatest (omit 3): $a = 2^5 \times 3^2 \times 7^2$ $= 14 \ 112$ Least (omit odds): $a = 2^5 = 32$
$30 = \frac{2 \times 3 \times 5}{20}$ c) $5 \frac{20}{4}$ $20 = \frac{2 \times 2 \times 5}{20}$	$42 = \frac{2 \times 3 \times 7}{7}$ d) 70 710 25 $70 = \frac{2 \times 5 \times 7}{7}$		4. She is correct: Any factor pair of 270 is the product of 2, 3, 3, 3 and 5 split into two sets. Any set involving 2 will be even. Any set without 2 will be odd. Therefore one even and odd factor in each pair (as well as 1×270).	6. 220 has the greatest factor: $2 \times 5 \times 11$ = 110	b) Greatest (omit 2 ³): $b = 2^2 \times 3^3 \times 7^2$ = 5292 Least (omit 2 ³ × 3 ³): $b = 2^2 \times 7^2 = 196$