Answers: Week 3 Session 1

Task 1

'three cubes made up of $3 \times 3 \times 3$
blocks'

Task 2

She is correct:
A square number is a number that is the product of a number multiplied by itself, e.g:

For even powers the result is always a square number

Exercise

Answers: Week 3 Session 2

Task 1

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Task 2

I Introducing 4s will not change | the numbers that can be shaded
I because we have already
I shaded all the products of 2×2
that are on the grid.
I
Including 5s results in all
multiples of 5 being shaded
except those with a prime factor other than 2,3 or 5 .
E.g. numbers not shaded:
$72=2 \times 2 \times 2 \times 3 \times 3$
$81=3 \times 3 \times 3 \times 3$
$96=2 \times 2 \times 2 \times 2 \times 2 \times 3$
$35=7 \times 5$
$55=11 \times 5$
$60=13 \times 5$
$70=2 \times 5 \times 7$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Exercise

1	
Blue shading indicates various possible answers	
a) $24=\underline{3} \times \underline{8}$	b) $120=\underline{10} \times \underline{12}$
$24=\underline{3} \times \underline{2} \times \underline{4}$	$120=\underline{5} \times \underline{2} \times \underline{12}$
$24=\underline{3} \times \underline{2} \times \underline{2} \times \underline{2}$	$120=\underline{5} \times \underline{2} \times \underline{2} \times \underline{6}$
2	

a) $12=2 \times 3 \times \underline{2}$
b) $20=\underline{2} \times 2 \times 5$
c) $30=2 \times \underline{3} \times 5$
d) $36=\underline{2} \times 2 \times 3 \times 3$
e) $45=3 \times \underline{3} \times \underline{5}$
f) $54=2 \times 3 \times \underline{3} \times \underline{3}$
a)
$24=2 \times 2 \times 2 \times 3$
b)
$48=2 \times 2 \times 2 \times 2 \times 3$
c)
$60=2 \times 2 \times 3 \times 5$
d)
$72=2 \times 2 \times 2 \times 3 \times 3$

$$
\begin{array}{|l|l|}
\hline 4 & 5 \\
\hline 2 \times 2 \times 3=12 & \text { a) } \\
2 \times 2 \times 5=20 & \begin{array}{l}
\text { i) } \\
\text { ii) }
\end{array} \\
2 \times 3 \times 3=18 & \text { iii) } \\
2 \times 3 \times 5=30 & \begin{array}{l}
\text { b) } \\
\text { are } \\
\text { mis }
\end{array} \\
3 \times 3 \times 5=45 & \text { form }
\end{array}
$$

$$
\text { i) } \quad 28=2 \times 2 \times 7 \text { or } 4 \times 7
$$

$$
2 \times 2 \times 5=20 \quad \text { ii) } \quad 63=3 \times 3 \times 7 \text { or } 9 \times 7
$$

b) No, she cannot form multiples of 11 that are also multiples of prime numbers missing from Gavin's list, e.g. she cannot form 11×13.
c) He can remove factors that are not prime as they can be formed by the prime factors in the list:

$$
4=2 \times 2 \quad 6=2 \times 3 \quad 8=2 \times 2 \times 2
$$

$$
9=3 \times 3 \quad \text { (see part a) for examples) }
$$

$D 1$

$1,2,5,7,13,41$,

D2.

104, 105, 112

Answers: Week 3 Session 3

Task 1

$30=2 \times 3 \times 5$

Same e.g: Prime factors, number of cubes Different e.g.: Initial factor pair chosen, order of prime factors in the tree

Whatever factor pair we start with we will always end up with the same prime factors. Try this out for yourself with different starting numbers.

Task 2

We can use the product of primes for some numbers to help us work them out for others. We just need to look at the connection between the numbers: E.g.:

Exercise

Answers: Week 3 Session 4

Task 1

$1=1$
$2=2$
$3=3$
$4=2 \times 2$
$5=5$
$6=2 \times 3$
$10=2 \times 5$
$12=2 \times 2 \times 3$
$15=3 \times 5$
$20=2 \times 2 \times 5$
$30=2 \times 3 \times 5$
$60=2 \times 2 \times 3 \times 5$
\square
Comparing the prime factorisation of 60 to the prime factorisations of its factors:

- Prime factorisation of any factor is a subset or part of the prime factorisation of 60
- Prime factorisation of factor pairs (E.g. 6 and 10) forms the prime factorisation of 60 when multiplied together.
- All prime factorisations are composed of the prime factors.

Task 2
$2 \times 5^{2} \times 7$
Factor pairs:
We can identify factor pairs by grouping the prime factorisation into two groups in different ways.

For example, if our number's prime factorisation is

$$
2 \times 5^{2} \times 7
$$

we know that multiplying these numbers together gives our number (350).

We also know that we can group the prime factors differently:

$$
(2 \times 5) \times(5 \times 7)=10 \times 35
$$

So 10 and 35 must be a factor pair of our number.

$$
2 \times 5^{2} \times 7
$$

Exercise

				2.	3.	5.	D1
a)		b)		a) $30: 1,2,3,5,6,10,15,30-8$ factors 42: $1,2,3,6,7,14,21,42-8$ factors 20: $1,2,4,5,10,20-6$ factors 70: $1,2,5,7,10,14,35,70-8$ factors b) 30, $\mathbf{4 2}$ and $\mathbf{7 0}$ all have $\mathbf{8}$ factors: - 2 factors: The original number and 1	a) 5 b) Yes: $2 \times 2=4$ c) $168 \times 42=2^{4} \times 3^{2} \times 7^{2}=$ $\left(2^{2} \times 3 \times 7\right) \times\left(2^{2} \times 3 \times 7\right)$ so it must be a square number d) $2^{8} \times 3^{6} \times 5^{4} \times 7^{4}$	210 has most (16 factors) 230 has fewest (8 factors)	a) Greatest (omit 3): $\begin{aligned} & a=2^{5} \times 3^{2} \times 7^{2} \\ & =14112 \end{aligned}$ Least (omit odds): $a=2^{5}=32$
	$30=\underline{2 \times 3 \times 5}$		$42=\underline{2 \times 3 \times 7}$	- 3 factors: 3 ways of combining the prime factors to form new factors (e.g. for 42 forming $3 \times 7=21$)	4	6.	
		d)	$70=\underline{2 \times 5 \times 7}$	20 only has 6 factors: - 2 factors: The original number and 1 - 2 factors: The distinct prime factors (2 and 7) - 2 factors: 2 ways of combining the prime factors to form new factors $(2 \times 2=4$ and $2 \times 7=14)$ C) Any number with prime factors in the form $a \times a \times b$: E.g. 45 has 6 factors because we can write it $3 \times 3 \times 5$	She is correct: Any factor pair of 270 is the product of $2,3,3,3$ and 5 split into two sets. Any set involving 2 will be even. Any set without 2 will be odd. Therefore one even and odd factor in each pair (as well as 1×270).	220 has the greatest factor: $\begin{aligned} & 2 \times 5 \times 11 \\ & =\mathbf{1 1 0} \end{aligned}$	b) Greatest (omit 2^{3}): $\begin{aligned} & b=2^{2} \times 3^{3} \times 7^{2} \\ & =5292 \end{aligned}$ Least (omit $2^{3} \times 3^{3}$): $b=2^{2} \times 7^{2}=196$

