Answers: Week 4 Session 1

Task 1

 Task 2
The squares have sides of 8 cm . the largest square that fits has sides of 16 cm (see diagram).

32 cm
Common factors are numbers that are factors of both numbers. The common factors of 32 and 48 are circled

Other squares that will fit perfectly are squares with a above. The highest common factor (HCF) is simply the side length of: greatest number, which in this case is 16.

1 is the lowest common factor of every pair of numbers, so the lowest common factor is not an interesting or important thing to find.

It's worth noticing that all the other common factors are factors of 16, will this be the case when looking at other HCFs?
$1 \mathrm{~cm}, 2 \mathrm{~cm}, 4 \mathrm{~cm}$.
Notice the similarities between this task and Task 1. The squares that fit are the common factors of 48 and 16.

Exercise

1.	3.	5.	7.
a) $1,2,4,7,14,28$	Boldened in the Q2 answers. a) 6 cm b) $1 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm}, 6 \mathrm{~cm}, 9 \mathrm{~cm}, 18$ cm (note the similarity between this answer and the answer for 2d)	a) to d) $=6$ e) to h) $=8$	a) Any two numbers that are a multiple of 16 : $16,32,48,64,80,96 \ldots . \text { Etc. }$ b) In many cases the HCF will be 16, however in some cases the HCF will be a multiple of 16
		6	
		180 and 252 much be shared into the same numbers of boxes. This is only possible if the number of boxes is a common factors of 180 and 252.	
2.	4		
	e.g. 12 and 24,24 and 36,24 and 60 , 36 and 84.	$\begin{aligned} & 180: \mathbf{1}, \underline{\mathbf{2}}, \mathbf{3}, \underline{\mathbf{4}}, 5, \mathbf{6}, \underline{\mathbf{9}}, 10, \underline{\mathbf{1 2}}, 15 \underline{\mathbf{1 8}}, 20,30, \underline{\mathbf{3 6}}, \\ & 45,60,90,180 \end{aligned}$	$\begin{aligned} & \text { e.g. } \operatorname{HCF}(64,96)=32, \operatorname{HCF}(48,96) \\ & =48, \operatorname{HCF}(128,196)-64 \end{aligned}$
b) 1, 2, 4 c) 1	Both numbers must be a multiple of 12. But watch out for numbers with a higher common factor! For example, 24 and 48 have HCF $=24$	$\begin{aligned} & 45,60,90,180 \\ & 252: \underline{\mathbf{1}}, \underline{\mathbf{2}}, \underline{\mathbf{4}}, \underline{\mathbf{6}}, 7, \underline{\mathbf{9}}, \underline{\mathbf{1 2}}, 14, \underline{\mathbf{1 8}}, 21,28, \underline{\mathbf{3 6}}, 42 \text {, } \end{aligned}$	D1.
d) $1,2,3,6,9,18$		The number of boxes could be any of the bold, underlined numbers.	Any cube with a side length which is a common factor of 8,12 and 16 : $1,2,4$

Answers: Week 4 Session 2

Task 1

We can find the common factors of 24 and 36 by looking at the common prime factors of 24 and 36.

Both 24 and 36 are 'built up' of two 2 s and a 3.
We can find the common factors by making combinations* of these numbers
*Note that prime factors multiply to make a number, so when we combine them we multiply them.
$2=2$
$3=3$
$2 \times 2=4$
$2 \times 3=6$
$2 \times 2 \times 3=12$

$$
56=2 \times 2 \times 2 \times 7!
$$

$$
42=2 \times 3 \times 7
$$

Exercise

1.		$2 b$		4						6.	D1.
a) $130=2 \times 5 \times 13$ b) $104=2 \times 2 \times 2 \times 13$ c) $56=2 \times 2 \times 2 \times 7$ d) $308=2 \times 2 \times 7 \times 11$				a) 26 b) 2 c) 8		d) 28 e) 2 f) 4				After two multiples of 72 greater than 1000 which don't share another common factor (other than one). e.g. 1782 and 1800 $\begin{aligned} & 1782=24 \times 72 \\ & 1800=25 \times 72 \end{aligned}$ 24 and 25 do not share any prime factors	The HCF of a and b can be expressed as a factor of $\frac{a \times b}{n}$, the HCF a and $a+b$ can be expressed as $\frac{a \times(a+b)}{n}$. n will be the same value in both cases.
22		$3 .$		5.							
a) i) Yes ii) Yes iii) $Y e s(2 \times 7)$ iv) No	v) $\mathrm{Yes}(2 \times 2 \times 2)$ vi) No vii) No viii) Yes ($2 \times 2 \times 2$ $\times 2 \times 3$)			Number 1 140 84 60 210 84 60 210 140	Number 2 12 20 28 12 30 42 20 30	HCF 4 4 4 4 6 6 6 10 10	$\left\|\begin{array}{c}\text { Number } 1 \\ 60 \\ 210 \\ 140 \\ 84 \\ 60 \\ 84 \\ 84 \\ 140\end{array}\right\|$	Number 2 70 28 42 70 105 105 105	HCF 10 10 14 14 14 15 21 15	factors 7. Squares with a side length of 21 m	

Answers: Week 4 Session 3

Task 1

The bars line up at 4 lots of 45 , and 3 lots of 60 . Therefore the lowest common multiple is 180 . If the pattern is extended, we can see that bars line up every 180.

Task 2

$\operatorname{LCM}(15,30)=30$
$\operatorname{LCM}(15,45)=45$
LCM $(15,60)=60$
$\operatorname{LCM}(15,75)=75$
$\operatorname{LCM}(30,45)=90$
$\operatorname{LCM}(30,60)=60$ $\operatorname{LCM}(30,75)=150$
$\operatorname{LCM}(45,60)=180$
$\operatorname{LCM}(45,75)=225$
$\operatorname{LCM}(60,75)=300$

Some thing to notice:
All of the numbers are multiples of 15 and all of the LCMs are multiples of 15 If one number is a multiple of another, the LCM will be the larger number (e.g. $\operatorname{LCM}(15,45)=45, \operatorname{LCM}(30,60)=60$

Greater depth

$60=\mathbf{4}$ lots of $15,75=\mathbf{5}$ lots of 15 . The lowest common multiples of 4 and 5 is 20. The lowest common multiple of 60 and 75 is 300 or $\mathbf{2 0}$ lots of 15

Exercise

1.		3.	5.		7.
a) $12,24,36,48,60,72,84$, $96,108,120,132,144$ b) $9,18,27,36,45,54,63,72$, 81, 90, 99, 108 c) $7,14,21,28,35,42,49,56$, $63,70,77,84$ d) $21,42,63,84,105,126$, $147,168,189,210,231,252$		a) e.g. 3 and 5, 3 and 15, 5 and 15 b) e.g. 3 and 7, 1 and 21, 7 and 21 c) e.g. 5 and 6, 2 and 15,10 and 15 d) e.g. 4 and 9, 12 and 18, 12 and 18 Note some non-examples for 36 . The lowest common multiple of 3 and 12 is not 36 , even though the product of 3 and 12 is 36	The smallest square will have sides of 180 cm . It is also possible to create squares with a side length that is a multiple of $180(360,540,720$ etc, $)$		a) 84 seconds, A will have completed 7 full turns and B will have completed 4 full turns. 84 is the lowest common multiple of 12 and 21. b) This will not change the answer
		4	6.		D1
2.		68 years (the LCM of 4 and 17) e.g. if they both hide in $2020 \ldots$	The smallest square will h length equal to the LCM of	ve a side the two	1) 28 seconds 2) No, they will cross every 28
a) 36 b) 84 c) 84	d) 21 e) 63 f) 63	...cicadas will appear in: 2037, 2054, 2071, 2088 ...predators will appear in: 2024, 2028, 2032, 2036, 2040, 2044, 2048, 2052, 2056, 2060, 2068, 2072, 2076, 2080, 2084, 2088	sides: $\begin{aligned} & \operatorname{LCM}(9,24)=72, \operatorname{LCM}(9,1 \\ & \operatorname{LCM}(9,36)=36, \operatorname{LCM}(24 \\ & \operatorname{LCM}(24,36)=36, \operatorname{LCM}(1 \end{aligned}$	$\begin{aligned} & 2)=36 \\ & 12)=24 \\ & , 36)=36 \end{aligned}$	seconds, and the crossings will be a third of the way around the turn. In terms of a clock, they will cross at 2 o'clock, 6 o'clock and 10 o'clock

Answers: Week 4 Session 4

Task 1

36				36				
9	9	9	9	9	9	9	9	
12	12		12	12	12		12	

The bars line up at 36 , and will continue to line up every 36. So the first five common multiples of 9 and 12 are: $36,72,108,144,180$

$$
9=3 \times 3 \quad 12=2 \times 2 \times 3
$$

So any common multiple must have prime factors of at least two 2s and two 3s.

12

Exercise

