Answers: Week 5 Session 1

Task 1

This is $\frac{1}{4}$

The first diagram has one of the four boxes shaded, but it is not a quarter because the parts are unequal, the first and last parts are smaller than the central parts.

This is $\frac{5}{8}$

This is $\frac{5}{4}=1 \frac{1}{4}$

This is $\frac{2}{4}$ or $\frac{1}{2}$

This is $\frac{11}{4}=2 \frac{3}{4}$

Task 2

two and two thirds $2 \frac{2}{3}$

In this case the parts are not congruent (or not the same shape) but they are equal in size. We can see this more clearly in the
 diagram on the right:

Exercise

2.

a) i) $A=\frac{1}{3}$
ii) $B=\frac{3}{4}$
iii) $C=1 \frac{1}{3}=\frac{4}{3}$
b) i) Any fraction between 0 and $\frac{1}{3}$, e.g. $\frac{1}{4}, \frac{1}{10}$, etc
ii) Any fraction between $\frac{1}{3}$ and $\frac{3}{4}$, e.g. $\frac{1}{2}, \frac{2}{3}, \frac{3}{7}$, etc
iii) Any fraction between 1 and $\frac{4}{3}$, e.g. $\frac{6}{5}, \frac{7}{6}, \frac{10}{9}$, etc

3.4.

a) $\frac{1}{4}$
b) $\frac{3}{4}$
C) $\frac{2}{4}=\frac{1}{2}$

a)

d)

b)

c)

e)
\square
f)

D

D1

Yes, it will always be possible. By increasing the value of the denominator it is possible to achieve smaller and smaller divisions. E.g.:
Between $\frac{3}{4}$ and $\frac{4}{5}: \frac{31}{40}$

Between $\frac{31}{40}$ and $\frac{4}{5}: \frac{63}{80}$
and so on...

Answers: Week 5 Session 2

Task 1

$\frac{1}{2} l$

$\frac{7}{6}=1 \frac{1}{6} l$

$\frac{7}{3}=2 \frac{1}{3} l$

Task 2

Use the diagrams to complete the statements: Section A is $\frac{\frac{1}{3}}{2}$ of the farm or 2 acres Section B is $\frac{\frac{2}{3}}{1}$ of the farm or 4 acres Section C is $\underline{\frac{1}{6}}$ of the farm or $\underline{1}$ acres Section D is $\frac{\mathbf{1}}{\mathbf{2}}$ of the farm or 3 acres

Exercise

1	2.	3.	4.	5.	6.	D1.
i) $\frac{1}{4} m^{2}$ ii) $\frac{3}{4} m^{2}$ iii) $\frac{5}{6} m^{2}$ iv) $\frac{1}{6} m^{2}$	a) $\frac{2}{3} L$ b) $\frac{5}{8} L$ c) $1 \frac{1}{3} L$	$\frac{1}{2} L$ in each of Billy and Tommy's containers. Together they have 1 L . The new container has capacity $3 L$. So the new container is $\frac{1}{3}$ full.	a) 15 minutes b) $\frac{10}{12}=\frac{5}{6}$ of a full turn c) $\frac{1}{12}$ of a full turn d) $\frac{1}{24}$ of a full turn	a) Black: $\frac{2}{4}=\frac{1}{2} m^{2}$ Grey: $\frac{1}{4} m^{2}$ White: $\frac{1}{4} m^{2}$ b) Black: $\frac{1}{4} m^{2}$ Grey: $\frac{1}{4} m^{2}$ White: $\frac{1}{2} m^{2}$ c) Black: $\frac{1}{4} m^{2}$ Grey: $\frac{1}{4} m^{2}$ White: $\frac{1}{2} m^{2}$	Various possibilities, e.g.: 5	a) $\frac{1}{8} \mathrm{~m}$ b) $\frac{1}{3} m$ c) $\frac{3}{10} \mathrm{~m}$ d) $\frac{7}{8} m$ For $\frac{3}{8} m$ an angle of 135° is required.

Answers: Week 5 Session 3

Task 1

What would happen to the amount of chocolate each child gets if...
a) The number of children they are sharing between goes up

Exercise

Task 2

Group A

Five bars of chocolate are shared equally by two children.

Group B

Seven bars of chocolate are shared equally by three children.

Sharing approach 1: We can divide each bar by the number of children we are sharing between (2 above) and then give each child one part per bar (five halves as above).

$$
5 \text { bars, } 2 \text { children }
$$

$$
5 \div 2=\frac{5}{2}=2 \frac{1}{2} \text { each }
$$

Group A get more chocolate

Sharing approach 2: We can give out bars to each child until we can't give bars to each child until we cant give
them all the same number, then divide the remaining $\operatorname{bar}(\mathrm{s})$ by the number of children sharing (3 above).

Can you create two different groups where each child gets the same amount of chocolate?
Yes - by finding equivalent divisions, e.g. 2 bars 4 children ($2 \div 4$), 3 bars 6 children $(3 \div 6)$, 10 bars $20(10 \div 20)$ children, etc.

The amount each child gets reduces as the bars are shared between more children.
b) The number of chocolate bars they have goes up

2 bars, 3 children $2 \div 3=\frac{2}{3}$ each
The amount each child gets increases as the number of bars increases.

3 bars, 3 children
$3 \div 3=\frac{3}{3}=1$ each
$3 \div 3=\frac{3}{3}=1$ each

5.

a) $\frac{3}{4}$ vs $\frac{3}{5}$ so first group gets more per person $\left(\frac{3}{4}>\frac{3}{5}\right)$
b) $\frac{2}{3}$ vs $\frac{1}{3}$ so first group gets more per person $\left(\frac{2}{3}>\frac{1}{3}\right)$
C) $\frac{3}{5} \mathrm{vs} \frac{4}{7}$ so first group gets more
per person $\left(\frac{3}{5}>\frac{4}{7}\right)$ per person $\left(\frac{3}{5}>\frac{4}{7}\right)$

The amount per person decreases.

Originally $\frac{4}{7} L$ per person.

With new joiners $\frac{5}{9} L$ per person. $\frac{4}{7}>\frac{5}{9}$ so the more per person.
a) Each person gets $\frac{10}{n}$ of a bar.
b) With new people each person gets $\frac{11}{n+2}$ of a bar.

Amount per person decreases n increases.

More per person in original group up to more with joiners.

Answers: Week 5 Session 4

Task 1

Exercise

1
2.
a) $\frac{2}{3}$
a)
i) 0.1 m
ii) 0.4 m
iii) 0.7 m
iv) 1.1 m
b)
i) $\frac{1}{10} m$
ii) $\frac{4}{10} m$
iii) $\frac{7}{10} m$
iv) $\frac{11}{10} \mathrm{~m}$

3.

a)
i) $\frac{2}{3}$
ii) $\frac{4}{3}=1 \frac{1}{3}$
iii) $\frac{5}{3}=1 \frac{2}{3}$
iv) $\frac{1}{6}$
v) $\frac{5}{6}$
vi) $\frac{9}{6}=$
$1 \frac{3}{6}=1 \frac{1}{2}$
b)

Various possible solutions, e.g.:

$$
\begin{aligned}
& \frac{1}{3}=\frac{2}{6} \\
& \frac{2}{3}=\frac{4}{6} \\
& \frac{5}{3}=\frac{10}{6}
\end{aligned}
$$

In general:

$$
\frac{n}{3}=\frac{2 n}{6}
$$

Various other equivalences, e.g.:

Task 2

Fill in the blanks below

$$
\frac{2}{3}=\frac{6}{9}=\frac{4}{6}
$$

$$
\frac{3}{4}=\frac{6}{8}
$$

$$
\frac{1}{2}=\frac{5}{10}=\frac{4}{8}
$$

There are no equivalences with sevenths on the diagram. Why not?

4.

Example equivalent fractions:

b)

